
Java Servlet

Introduction to Website

Website is a collection of related web pages that may contain text, images, audio and video.

The first page of a website is called home page. Each website has specific internet address

(URL) that you need to enter in your browser to access a website.

Website is hosted on one or more servers and can be accessed by visiting its homepage using

a computer network. A website is managed by its owner that can be an individual, company

or an organization.

Type of Website

a) Static website

Static website is the basic type of website that is easy to create. You don't need web

programming and database design to create a static website. Its web pages are coded in

HTML.

The codes are fixed for each page so the information contained in the page does not change

and it looks like a printed page.

b) Dynamic website

Dynamic website is a collection of dynamic web pages whose content changes dynamically.

It accesses content from a database or Content Management System (CMS). Therefore, when

you alter or update the content of the database, the content of the website is also altered or

updated.

Dynamic website uses client-side scripting or server-side scripting, or both to generate

dynamic content.

Client side scripting generates content at the client computer on the basis of user input. The

web browser downloads the web page from the server and processes the code within the page

to render information to the user.

In server side scripting, the software runs on the server and processing is completed in the

server then plain pages are sent to the user.

Static vs Dynamic website

Static Website Dynamic Website

Prebuilt content is same every time the page

is loaded.

Content is generated quickly and changes

regularly.

It uses the HTML code for developing a

website.

It uses the server side languages such

as PHP, SERVLET, JSP, and

ASP.NET etc. for developing a website.

It sends exactly the same response for every

request.

It may generate different HTML for each

of the request.

The content is only changes when someone

publishes and updates the file (sends it to

the web server).

The page contains "server-side" code it

allows the server to generate the unique

content when the page is loaded.

Flexibility is the main advantage of static

website.

Content Management System (CMS) is

the main advantage of dynamic website.

How Dynamic Web Application work:

Server side development in Java

Servlet technology is used to create web application in Java (resides at server side and

generates dynamic web page).

Java Servlet

A Servlet is a Java class that responds to requests from web clients, often using HTTP. The

most common type of servlet is an HTTP servlet, which handles HTTP requests and

generates HTTP responses. Servlets run inside a servlet container (also known as a web

container), which is part of a web server (e.g., Apache Tomcat, Jetty, or JBoss).

Servlets are a core part of the Java EE (Enterprise Edition) platform but can also be used in

standalone applications or smaller web applications.

Servlet technology is robust and scalable because of java language.

There are many interfaces and classes are available in the servlet API such as Servlet,

GenericServlet, HttpServlet, ServletRequest, ServletResponse etc.

Package for the Servlet interfaces and classes are :

javax.servlet.*;

javax.servlet.http.*;

Servlet can be described in many ways, depending on the context.

o Servlet is a technology i.e. used to create web application.

o Servlet is an API that provides many interfaces and classes including documentations.

o Servlet is an interface that must be implemented for creating any servlet.

o Servlet is a class that extend the capabilities of the servers and respond to the

incoming request. It can respond to any type of requests.

o Servlet is a web component that is deployed on the server to create dynamic web

page.

Before Java –Old Concept:

CGI(Common Gateway Interface)

CGI technology enables the web server to call an external program and pass HTTP request

information to the external program to process the request. For each request, it starts a new

process.

Disadvantages of CGI

There are many problems in CGI technology:

1. If number of client increases, it takes more time for sending response.

2. For each request, it starts a process and Web server is limited to start processes.

3. It uses platform dependent language e.g. C, C++, perl.

Advantage of Servlet

There are many advantages of servlet over old concept. The web container creates threads for

handling the multiple requests to the servlet. Threads have a lot of benefits over the Processes

such as they share a common memory area, lightweight, cost of communication between the

threads are low. The basic benefits of servlet are as follows:

1. Betterperformance: because it creates a thread for each request not process.

2. Portability: because it uses java language.

3. Robust: Servlets are managed by JVM so we don't need to worry about memory leak,

garbage collection etc.

4. Secure: because it uses java language.

Life Cycle of Servlet

Three methods are central to the life cycle of a servlet. These are init(), service() and

destroy(). They are implemented by every servlet and invoked at specific time by server.

Following is the life cycle of servlet:

i) User enters the URL to a web browser. The browser generate HTTP request for

this URL. This request is then sent to the appropriate server.

ii) HTTP request is received by the Web Server. The Server maps this request to a

particular servlet. The servlet dynamically loaded into the address space of server.

iii) The server invokes the init() method of the servlet. This method is invoked only

when the servlet is first loaded into memory. It is possible to pass initialization

parameters to the servlet so it may configure itself.

iv) The server invokes the service() method of the servlet. This method is called to

process the HTTP request. It read data that has been provided in the HTTP

request. It HTTP response for the client.

v) Finally, the server may decide to unload the servlet from its memory. The server

calls the destroy() method to relinquish any resources such as file handles that are

allocated for the servlet.

Servlet may remain in server’s address space and is available to process any other HTTP

requests received from client. The service() method is called for each HTTP request.

How Servlet Works

Server Development Environment

To create servlets, a servlet development environment is needed.

A number of Web Servers that support servlets are available in the market. Some web

servers are freely downloadable for example: Apache Tomcat, Glassfish, JBoss, WildFly,

XAMPP

Apache Tomcat

Apache Tomcat is an open source software implementation of the Java Servlet and Java

Server Pages technologies and can act as a standalone server for testing servlets and can be

integrated with the Apache Web Server.

Here are the steps to setup Tomcat on your machine –

Configuring Tomcat on Eclipse

i) Download from the Apache website.

ii) Unzip it and create a folder in the computer

iii) To configure in Eclipse Go to:

Windows-Preferences-Server-Runtime Environment-Add Server - Select the

version you have downloaded – Select the folder where you unzip it – Apply

Servlet interfaces and classes

Name Type Pakage

Servlet Interface javax.servlet.*

GenericServlet Abstract Class javax.servlet.*

HttpServlet Abstract Class javax.servlet.http.*

Protocol Independent Servlet: If you are creating protocol independent Servlet you extend

GenericServlet class.

Protocol Dependent Servlet: If you are creating protocol dependent servlet such as http

servlet then you should extend HttpServlet class.

Servlet vs GenericServlet vs HttpServlet

Following figure shows the hierarchy of Servlet vs GenericServlet vs HttpServlet and to

know from where HttpServlet comes.

Servlet is the super interface. Servlet interface contains 5 abstract methods. These abstract

methods are :

i) init(), ii) service(), iii) getServiceConfig(), iv) getServletInfo(), v) destroy().

These 5 abstract methods are inherited by GenericServlet and HttpServlet.

Observe the hierarchy and understand the relationship between the three (involved in

multilevel inheritance). With the observation, a conclusion can be arrived, to write a Servlet

three ways exist.

a) by implementing Servlet (it is interface)

b) by extending GenericServlet (it is abstract class)

c) by extending HttpServlet (it is abstract class)

http://way2java.com/wp-content/uploads/2014/02/image1.png

 Servlet Interface : Disadvantage of the Servlet Interface is, all the 5 abstract methods

of the interface Servlet should be overridden even though programmer is not

interested in all.

These 5 methods are : i) init(), ii) service(), iii) getServiceConfig(), iv)

getServletInfo(), v) destroy().

 GenericServlet Class : By Inheriting GenericServlet there is need to verriding its

only one abstract method service(). It is enough to the programmer to override only

this method. It is a callback method (called implicitly).

 HttpServlet Class : By extending HttpServlet, need not to override any methods as

HttpServlet contains no abstract methods. Even though the HttpServlet does not

contain any abstract methods, it is declared as abstract class by the designers to not to

allow the programmer to create an object directly because a Servlet object is created

by the system (here system is Servlet Container).

Servlet Interface implementation

Methods of Servlets

A Generic servlet contains the following five methods:

init()

public void init(ServletConfig config) throws ServletException

The init() method is called only once by the servlet container throughout the life of a servlet.

By this init() method the servlet get to know that it has been placed into service.

The servlet cannot be put into the service if the init() method does not return within a fix time

set by the web server. It throws a ServletException.

Parameters - The init() method takes a ServletConfig object that contains the initialization

parameters and servlet's configuration.

service()

public void service(ServletRequest req, ServletResponse res) throws ServletException,

IOException

Once the servlet starts getting the requests, the service() method is called by the servlet

container to respond. The servlet services the client's request with the help of two objects.

These two objects javax.servlet.ServletRequest and javax.servlet.ServletResponse are

passed by the servlet container.

The status code of the response always should be set for a servlet that throws or sends an

error.

Parameters - The service() method takes the ServletRequest object that contains the client's

request and the object of ServletResponse contains the servlet's response. The service()

method throws ServletException and IOExceptions exception.

getServletConfig()

public ServletConfig getServletConfig()

This method contains parameters for initialization and startup of the servlet and returns

a ServletConfig object. This object is then passed to the init method. When this interface is

implemented then it stores the ServletConfig object in order to return it. It is done by the

generic class which implements this inetrface.

Returns - the ServletConfig object

getServletInfo()

public String getServletInfo()

The information about the servlet is returned by this method like version, author etc. This

method returns a string which should be in the form of plain text and not any kind of

markup.

 Returns - a string that contains the information about the servlet

destroy()

public void destroy()

This method is called when we need to close the servlet. That is before removing a servlet

instance from service, the servlet container calls the destroy() method. Once the servlet

container calls the destroy() method, no service methods will be then called . That is after the

exit of all the threads running in the servlet, the destroy() method is called. Hence, the servlet

gets a chance to clean up all the resources like memory, threads etc which are being held.

Servlet Interface Example:

DemoServlet.java

import java.io.*;

import javax.servlet.*;

public class DemoServlet implements Servlet{

 ServletConfig config=null;

 public void init(ServletConfig config){

 this.config=config;

 System.out.println("Initialization complete");

 }

//ServletRequest : To accept the request

//ServletResponse : To send the response

 public void service(ServletRequest req,ServletResponse res)

 throws IOException,ServletException{

 res.setContentType("text/html");

 PrintWriter pwriter=res.getWriter();

 pwriter.print("<html>");

 pwriter.print("<body>");

 pwriter.print("<h1>Servlet Example Program</h1>");

 pwriter.print("</body>");

 pwriter.print("</html>");

 }

 public void destroy(){

 System.out.println("servlet life cycle finished");

 }

 public ServletConfig getServletConfig(){

 return config;

 }

 public String getServletInfo(){

 return "Servlet Demo";

 }

}

GenericServlet class

It is the immediate subclass of Servlet interface. In this class, only one abstract

method service() exist. Other 4 abstract methods of Servlet interface are given

implementation (given body). Anyone who extends this GenericServlet should

override service() method. It was used by the Programmers when the Web was not

standardized to HTTP protocol. It is protocol independent; it can be used with any protocol,

say, SMTP, FTP, CGI including HTTP etc.

Signature:

public abstract class GenericServlet extends java.lang.Object implements Servlet,

ServletConfig, java.io.Serializable

GenericServlet class Example:

DemoServlet.java

import java.io.*;

import javax.servlet.*;

public class DemoServlet extends GenericServlet{

//ServletRequest : To accept the request

//ServletResponse : To send the response

 public void service(ServletRequest req,ServletResponse res)

 throws IOException,ServletException{

 res.setContentType("text/html");

 PrintWriter pwriter=res.getWriter();

 pwriter.print("<html>");

 pwriter.print("<body>");

 pwriter.print("<h1>Servlet Example Program</h1>");

 pwriter.print("</body>");

 pwriter.print("</html>");

 }

}

HttpServlet (Creating Web Application in Java)

When HTTP protocol was developed by W3C people to suit more Web requirements, the

Servlet designers introduced HttpServlet to suit more for HTTP protocol. HttpServlet is

protocol dependent and used specific to HTTP protocol only.

The immediate super class of HttpServlet is GenericServlet. HttpServlet overrides

the service() method of GenericServlet.

HttpServlet is abstract class but without any abstract methods.

With HttpServlet extension, service() method can be replaced by doGet() or doPost() with the

same parameters of service() method.

Signature:

public abstract class HttpServlet extends GenericServlet implements java.io.Serializable

Being subclass of GenericServlet, the HttpServlet inherits all the properties (methods) of

GenericServlet. So, if you extend HttpServlet, you can get the functionality of both.

HttpServlet Example :

// Import required java libraries

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*; // Extend HttpServlet class

public class HelloWorld extends HttpServlet {

 private String message;

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 // Set response content type

 response.setContentType("text/html");

 // Actual logic goes here.

 PrintWriter out = response.getWriter();

 out.println("<h1>" + message + "</h1>");

 }

 public void destroy() {

 // do nothing.

 }

}

doGet and doPost methods:

The doGet and doPost methods are called in response to an HTTP GET and an HTTP POST

respectively which are submission methods used in an HTML FORM. On an HTTP GET the

form data is part of the URL whereas on an HTTP POST the form data appears in the

message body. You should always have one method call the other in your servlet as

processing the form dat*a in a servlet is consistent regardless of the submission method.

Client/frontend :-

<form>

<input type = “text” name=”user” id=”us”/>

<input type = “text” name=”password” id=”pw”/>

</form>

For example:

Backend :-

protected void doPost(HttpServletRequest req, HttpServletResponse res) throws

IOException

{

 String un = req.getParameter("user");

 String pw = req.getParameter("password");

 DataConnection dc = new DataConnection();

 dc.connect();

 try {

 ResultSet rs=dc.stmt.executeQuery("select * from login");

 PrintWriter writer = res.getWriter();

 while(rs.next())

 {

 if(un.compareTo(rs.getString(1))==0 && pw.compareTo(rs.getString(2))==0)

 {

 try {

 res.sendRedirect("Welcome.html");

 break;

 } catch (IOException e) {

 }

 }

 else
 {

 String htmlcode ="<html>";

 htmlcode+= "<body>";

 htmlcode+="<h1> You have entered wrong user name or password</h1>";

 htmlcode+="</body>";

 htmlcode+="</html>";

 writer.write(htmlcode);

 break;

 }

 }

 }catch(SQLException sq)

 {

 }

}

Difference between doGet and doPost methods:

DoGet

1)In doGet Method the parameters are appended to the URL and sent along with header

information.

2)Maximum size of data that can be sent using doGet is 240 bytes.

3)Parameters are not encrypted.

4)DoGet is faster if we set the response content length since the same connection is used.

5) Increasing the performance

6)DoGet should be idempotent. i.e. doget should be able to be repeated safely many times

7)DoGet should be safe without any side effects for which user is held responsible

DoPost

1)In doPost, parameters are sent in separate line in the body.

2)There is no maximum size for data

3)Parameters are encrypted

4)Dopost is generally used to update or post some information to the server

5)DoPost is slower compared to doGet since doPost does not write the content length

6)This method does not need to be idempotent. Operations requested through POST can have

side effects for which the user can be held accountable, for example, updating stored data or

buying items online.

Request and Response in Servlet

HttpServletRequest interface :

 HttpServletRequest is an interface that provides methods to handle the HTTP request

sent by the client (usually a browser) to the server.

 It allows access to request data like parameters, headers, cookies, and session

information.

 It provides methods to read form data (e.g., getParameter()), access request headers

(getHeader()), and interact with session attributes (getSession()).

 You can also use getMethod() to determine whether the request is a GET, POST,

PUT, etc.

 It's commonly used in servlets to retrieve user input from the URL, query parameters,

or form submissions.

HttpServletResponse interface:

 HttpServletResponse is an interface that provides methods to send the HTTP response

from the server back to the client.

 It allows you to set the response's content type (e.g., HTML, JSON) with

setContentType() and control HTTP status codes (e.g., setStatus()).

 You can use getWriter() to write response data, or sendRedirect() to redirect the client

to a different URL.

 Methods like addHeader() let you add custom headers to the response, e.g., for setting

cookies or caching directives.

 It's used in servlets to generate dynamic content and control how the response is sent

back to the client.

Syntax :

protected void doPost(HttpServletRequest req, HttpServletResponse res) throws

IOException

Deployment Descriptor

web.xml file deployment descriptor

A web application's deployment descriptor describes the classes, resources and configuration

of the application and how the web server uses them to serve web requests. When the web

server receives a request for the application, it uses the deployment descriptor to map the

URL of the request to the code that ought to handle the request.

 <web-app>

<servlet>

<servlet-name>DemoServlet</servlet-name>

<servlet-class>DemoServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>DemoServlet</servlet-name>

<url-pattern>/welcome</url-pattern>

</servlet-mapping>

</web-app>

Example 1 : Complete Login Page Example without Database

a) HTML Code for Login Page

<!DOCTYPE html>

<html>

<head>

</head>

<body>

<form name="myForm" action="/TestServlet" method="get">

User Name: <input type="text" name=uname">

Password: <input type="text" name="password">

 <input type="submit" value="submit">

</form>

</body>

</html>

b) Servlet class to Process Login Page Request

import javax.servlet.ServletException;

import javax.servlet.http.*;

import java.io.*;

import java.sql.*;

// classes used in this code :

//1. HttpServlet, 2. HttpServletResponse, 3. HttpServletRequest

public class TestServlet extends HttpServlet {

 private static final long serialVersionUID = 1L;

 private int count;

 public void init()

 {

 count=0;

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException

 {

 PrintWriter pw = res.getWriter();

 // Access the user name and password from the html file

 String name = req.getParameter("uname");

 String password = req.getParameter("password");

 if(name.compareTo(“gvmitm”)==0)

 if(password.compareTo(“abc”)==0)

 {

 pw.println("Welcome "+ name + "You are visitor no " + (++count));

 res.sendRedirect("Welcome.html");

 //Welcome.html file will open if username and password is correct

 }

 }

}

c) Deployment descriptor (web.xml file)

 <servlet>

 <servlet-name>TestServlet</servlet-name>

 <servlet-class>bcakend.TestServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>TestServlet</servlet-name>

 <url-pattern>/TestServlet</url-pattern>

 </servlet-mapping>

</web-app>

Example 2 : Complete Login Page Example using Database

Connectivity

a) HTML Code for Login Page

<!DOCTYPE html>

<html>

<head>

</head>

<body>

<form name="myForm" action="/TestServlet" method="get">

User Name: <input type="text" name=”nm">

Password: <input type="text" name="pw">

 <input type="submit" value="submit">

</form>

</body>

</html>

b) Servlet class to Process Login Page Request using database connectivity

import javax.servlet.ServletException;

import javax.servlet.http.*;

import java.io.*;

import java.sql.*;

// 1. HttpServlet, 2. HttpServletResponse, 3. HttpServletRequest

public class TestServlet extends HttpServlet {

 //private static final long serialVersionUID = 1L;

 Statement st;

 ResultSet rs;

 ConnectData cd; //Data connectivity class

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException

 {

 cd = new ConnectData();

 cd.DataConnection();

 try {

 st = cd.c.createStatement(); //statement object initialization

 }

 catch(SQLException sqe)

 {

 }

 //Handling of Request

 String name = req.getParameter("nm");

 String password = req.getParameter("pw");

 try

 {

 rs = st.executeQuery("Select * From Login");

 while(rs.next())

 {

 if(name.compareTo(rs.getString(1))==0)

 if(password.compareTo(rs.getString(2))==0)

 {

 res.sendRedirect("Welcome.html");

 break;

 }

 }

 }catch(SQLException sqe)

 {

 System.out.println(sqe);

 }

 }

}

c) Database Connectivity Class

import java.sql.*;

public class ConnectData {

 Connection c;

 void DataConnection()

 {

 //Driver Registration

 try {

 Class.forName("com.mysql.cj.jdbc.Driver");

 }

 catch(ClassNotFoundException cnfe)

 {

 System.out.println(cnfe);

 }

 //Establishing the connection

 try
 {

c=DriverManager.getConnection("jdbc:mysql://localhost:3306/BCA2021","root","Abc@123

");

 }

 catch(SQLException se)

 {

 System.out.println(se);

 }

 }

}

d) Deployment Descriptor (web.xml file)

 <servlet>

 <servlet-name>TestServlet</servlet-name>

 <servlet-class>bcakend.TestServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>TestServlet</servlet-name>

 <url-pattern>/TestServlet</url-pattern>

 </servlet-mapping>

</web-app>

