Java/ldbc/RakeshBharatiya

JDBC

Java Database Connectivity
(JDBC)

Java Database Connectivity (JDBC) is an application programming interface (API) for
the programming language Java, which defines how a client may access a database.

Java Database Connectivity (JDBC) is an application program interface (API)
specification for connecting programs written in Java to the data in popular databases.
The application program interface lets you encode access request statements in
Structured Query Language (SQL) that are then passed to the program that manages
the database. It returns the results through a similar interface.

Architecture of JDBC

JDBC is designed on the basis of the agreement between Sun and Database vendors.
As per this understanding Sun provide Java API for SQL access along with a driver
manager and database vendors could provide their own drivers to plug in to the driver
manager.

Java/ldbc/RakeshBharatiya

By making this design two API were created:
i) JDBC API for application programmer.

i) JDBC Driver API for database vendors and tool providers.

Note:JDBC also provide support for ODBC as JDBC-to-ODBC bridge in older version.

Java/ldbc/RakeshBharatiya

The latest version, JDBC 4.3, is specified by a maintenance release 3 of JSR 221 and is
included in Java SE 9.

JDBC Driver
A JDBC driver is a set of Java classes that implement the JDBC interfaces, targeting a
specific database.

The JDBC interface comes with standard Java, but the implementation of these
interfaces is specific to the database you need to connect to. Such an implementation is
called a JDBC driver.

JAR FILE

Database driver can be downloaded from the official website of Oracle, which are
available in jar files.

Java/ldbc/RakeshBharatiya

Type of JDBC Driver
There are 4 different types of JDBC drivers:

Type 1 Driver:

A type 1 JDBC driver consists of a Java part that translates the JDBC interface calls to
ODBC calls. A JDBC-to-ODBC bridge then calls the ODBC driver of the given database.
Type 1 drivers are (were) mostly intended to be used in the beginning, when there were
no type 4 drivers (all Java drivers). Any database for which an ODBC driver is installed
can be accessed, and data can be retrieved.

Type 2 Driver (Native API Driver)

The JDBC type 2 driver, also known as the Native-API driver, is a database driver
implementation that uses the client-side libraries of the database. The driver
converts JDBC method calls into native calls of the database API.

Calling Java Application

JDBC API

JDBC Driver Manager

M ative-API driver
(Type Z Drver)

{

Database library APIs

Database

Type 3 driver — Network-Protocol driver (middleware driver)

Java/ldbc/RakeshBharatiya

The JDBC type 3 driver, also known as the Pure Java driver for database
middleware, is a database driver implementation which makes use of a middle
tier between the calling program and the database. The middle-tier (application server)
converts JDBC calls directly or indirectly into a vendor-specific database protocol.

The same client-side JDBC driver may be used for multiple databases. It depends on
the number of databases the middleware has been configured to support. The type 3
driver is platform-independent as the platform-related differences are taken care of by
the middleware. Also, making use of the middleware provides additional advantages of
security and firewall access.

| Calling Java Application |

JDRC API

| IJDBC Driver Manager |

retwork-Protocol driver
[(Tyvpe 2 Driver)

I

rMiddlewvrare

[oepplication server)

& g ®

Different database vendors

https://en.wikipedia.org/wiki/Middle_tier
https://en.wikipedia.org/wiki/Middle_tier
https://en.wikipedia.org/wiki/Platform-independent

Java/ldbc/RakeshBharatiya

Type 4 driver — Database-Protocol driver (Pure Java driver)

The JDBC type 4 driver, also known as the Direct to Database Pure Java Driver, is a
database driver implementation that converts JDBC calls directly into a vendor-
specific database protocol.

Written completely in Java, type 4 drivers are thus platform independent. They install
inside the Java Virtual Machine of the client.

JDBC
Interfaces

Java Driver

Part Database

Type 4 driver differ from type 3 driver is that the protocol conversion logic resides not at
the client, but in the middle-tier. Type 4 drivers and type 3 driver are written entirely in
Java.

Requirement for JDBC

« Database Software

— Database

— Tables

— SQL Query
+ Database Driver
« IP Address
* Port No

Steps to access the database through JDBC

Followings are the steps involve connecting and accessing the database
from Java Application through JDBC

* Import the package java.sql.*;

Java/ldbc/RakeshBharatiya

* Register the driver

« Establish the connection

+ Create the statement object
* Create the result set

* Use the result set

* Close the connection.

/ PreparedStatement

Connection Statement — ResultSet

\n CallableStatement

1. Registration of Driver:

A database driver is a computer program that implements a protocol (JDBC) for a
database connection. The driver works like an adaptor which connects a generic
interface to a specific database vendor implementation.

Database driver can be downloaded from the official website of Oracle, which are
available in jar files.

You must register the driver in your program before you use it. Registering the driver is
the process by which the Data Base vendor (e.g. Oracle) driver's class file is loaded into
the memory, so that it can be utilized as an implementation of the JDBC interfaces.

Method to register driver :

. Class.forName Method

Java/ldbc/RakeshBharatiya

try {

Class.forName("oracle.jdbc.driver.OracleDriver");

}

catch(ClassNotFoundException ex) {
System.out.printin("Error: unable to load driver class!");
System.exit(1);

}

Note: java.lang.Class is the class instance represent classes and interfaces in a
running Java application.

Note : Applications no longer need to explicity load JDBC drivers
using Class.forName(). Existing programs which currently load JDBC drivers
using Class.forName() will continue to work without modification. When the
method getConnection is called, the DriverManager will attempt to locate a suitable
driver from amongst those loaded at initialization and those loaded explicitly using the
same classloader as the current applet or application. Starting with the Java 2 SDK,
Standard Edition, version 1.3, a logging stream can be set only if the proper permission
has been granted.

Note: java.lang.Class is the class instance represent classes and interfaces in a
running Java application.

Driver can also be registerd through the DriverManager.RegisterDriver() method:

It is use for non jdk compliant JVM, for example supplied by MicroSoft.

try{
DriverManager.registerDriver(new oracle.jdbc.OracleDriver());

Java/ldbc/RakeshBharatiya

}

catch(ClassNotFoundException ex){
System.out.printin("Error: unable to load driver class!");
System.exit(1);

}

2. Establishing the Connection:

Database URL

After you've loaded the driver, you can establish a connection using

the DriverManager.getConnection() method.

There are 3 overloaded DriverManager.getConnection() methods :
+ getConnection(String url)
« getConnection(String url, Properties prop)

« getConnection(String url, String user, String password)

Here each form requires a database URL. A database URL is an address that points to

database.

Formulating a database URL is where most of the problems associated with

establishing a connection occurs.
Following table lists down the popular JDBC driver names and database URL.

RDBMS JDBC driver name URL format

MySQL com.mysql.jdbc.Driver jdbc:mysql://hostname:Port Number/ databaseName
com.mysql.cj.jdbc.Driver

(For java version higher than
8)

Java/ldbc/RakeshBharatiya

ORACLE oracle.jdbc.driver.OracleDriver | jdbc:oracle:thin:@hostname:portNumber:databaseName
PostGreSQL | org.postgresql.Driver jdbc:postgresql:// hostname : server-port / database-name
MS-SQL com.microsoft.jdbc.sqlserver.S | jdbc:sqlserver:/[{HOST}{PORT},databaseName={DB}
Server QLServerDriver
DB2 COM.ibm.db2.jdbc.net.DB2Dri | jdbc:db2:hostname:port Number/databaseName

ver
Sybase com.sybase.jdbc.SybDriver jdbc:sybase:Tds:hostname: port Number/databaseName

All the highlighted part in URL format is static.

Remaining portion need to change.

Default Port No.
Oracle : 1521

MySql : 3306
PostGreSQL :5432
MS-SQLServer : 1433

Create Connection Object

To create a connection Database URL with a username and passwordare required.

Assuming you are using Oracle's thin driver, you'll specify a host:port:databaseName
value for the database portion of the URL.

If you have a host at TCP/IP address 192.0.0.1 with a host name of SBIT and Oracle
listener is configured to listen on port 1521, and database name is EMP, then complete
database URL would be —

Java/ldbc/RakeshBharatiya

jdbc:oracle:thin:@GVM:1521.EMP

Now you have to call getConnection() method with appropriate username and password
to get a Connection object as follows —

String URL = "jdbc:oracle:thin.@GVM:1521:EMP";
String USER = "username";
String PASS = "password"

Connection conn = DriverManager.getConnection(URL, USER, PASS);

What is Port No:

Port numbers are part of the addressing information used to identify the senders and
receivers of messages. Port numbers allow different applications on the same
computer to share network resources simultaneously. These port numbers work like
telephone extensions. Just as a business telephone switchboard can use the main
phone number and assign each employee an extension number.

Using Ports To Identify Services

=—> — [E]

Host A
Sends a request i Do s
directed to 200.0.0.1 e
and Dest. Port 80 IPF Address
200.0.0.1

In this example, Host A sends a reguest to a server on the Internet.
The Destination Port is set to B0D, indicating a HTTF request

JDBC THIN : It is pure java driver and does not require any Oracle software installed on
client computer.

Hostname: A hostnameis a name that is assigned to a device connected to
a computer network and that is used to identify the device in various forms of electronic
communication

Java/ldbc/RakeshBharatiya

Create the statement object

Statement object used to execute SQL query. Before execution of SQL query. There is
need to create a Statement Object.

Statement s = null;

try {
S = conn.createStatement();

catch (SQLException e) {

}
finally {

Once a Statement object is created, you can then use it to execute an SQL statement
with one of its three execute methods.

Result Set

The SQL statements that read data from a database query, return the data in a result
set. The SELECT statement is the standard way to select rows from a database and
view them in a result set. The java.sqgl.ResultSet interface represents the result set of a
database query.

A ResultSet object maintains a cursor that points to the current row in the result set. The
term "result set" refers to the row and column data contained in a ResultSet object.

ResultSet rs;

To get the result in rs use one of the following Method of Statement Object:

* Int executeUpdate (String SQL): Returns the number of rows affected by
the execution of the SQL statement. Use this method to execute SQL
statements for which are expected to get a number of rows affected - for
example, an INSERT, UPDATE, or DELETE statement.

Java/ldbc/RakeshBharatiya

For Example:
Statement st = conn.createStatement();

Int reslt = st.executeUpdate(“Update Emp set salary = salary+10/100*salary where city
= ‘delhi’);

* ResultSet executeQuery (String SQL): Returns a ResultSet object. This
method is used when you expect to get a result set, as you would with a
SELECT statement.

For example:
ResultSet Rs = st.executeQuery (Select * from emp);

» execute() --- If you don’t know which method to be used for executing SQL
statements, this method can be used. This will return a boolean. TRUE

indicates the result is a ResultSet and FALSE indicates it has the int value
which denotes number of rows affected by the query.

boolean rsit;
rslt = st.execute(“Select name from emp where salary>100000");

In the above example if rslt value is true it means ResultSet is created and if it is false it
means no ResultSet only it will tells us the no of row affected.

« Closing the connection

To close the connection in JDBC

conn.close();

Java/ldbc/RakeshBharatiya

Working on Result Set:

Function of result set with complete signature:

The ResultSet interface contains dozens of methods for getting the data of the current

row.

1 public void beforeFirst() throws SQLException
Moves the cursor just before the first row.

2 public void afterLast() throws SQLEXxception
Moves the cursor just after the last row.

3 public boolean first() throws SQLEXxception
Moves the cursor to the first row.

4 public void last() throws SQLEXxception
Moves the cursor to the last row.

5 public boolean absolute(int row) throws SQLEXxception
Moves the cursor to the specified row.

6 public boolean relative(int row) throws SQLEXxception
Moves the cursor the given number of rows forward or backward, from where it
is currently pointing.

7 public boolean previous() throws SQLEXxception
Moves the cursor to the previous row. This method returns false if the previous
row is off the result set.

8 public boolean next() throws SQLEXxception
Moves the cursor to the next row. This method returns false if there are no

more rows in the result set.

9 public intgetRow() throws SQLException

Java/ldbc/RakeshBharatiya

Returns the row number that the cursor is pointing to.

10 public void moveTolnsertRow() throws SQLEXxception
Moves the cursor to a special row in the result set that can be used to insert a

new row into the database. The current cursor location is remembered.

11 public void moveToCurrentRow() throws SQLEXxception
Moves the cursor back to the current row if the cursor is currently at the insert

row; otherwise, this method does nothing

By using column name:

while(rs.next())

{
System.out.println (rs.getString(“item”)+rs.getint(“age™));

}

Here “item” and “age” are the name of column.

Example Database Connectivity

package databasepackage;
import java.sql.*;
public class DataConnectionTest {

public Connection cn;
public Statement stmt;
ResultSet rs;

public void connect()
{

try {
Class.forName("com.mysql.cj.jdbc.Driver");

}Ycatch(ClassNotFoundException cnfe)
{
}

try {

System.out.println(cnfe);

Java/ldbc/RakeshBharatiya

cn = DriverManager.getConnection
("jdbc:mysql://localhost:3306/mca", "root", "Abc@123");

rs=stmt.executeQuery("Select * from login");

while(rs.next())

{
System.out.println(rs.getString(1));
System.out.println(rs.getString(2));
}
}
catch(SQLException sqe)
{
System.out.println(sqge);
}
}
public static void main(String arg[])
{
DataConnectionTest dc = new DataConnectionTest();
dc.connect();
}

}
ResultSetMetaData

ResultSetMetaData is also one of the interface of java.sql package. This interface
provides overview about a ResultSet object like number of columns, column name, data
type of a column etc. We need this info about a ResultSet object before processing the
actual data of a ResultSet.

Instance of ResultSetMetaData can be instantiated by the method of ResultSet i.e.

getMetaData()

for example :

ResultSet rs;

ResultSetMetaData rsmd = rs.getMetaData();

Methods of ResultSetMetaDatainterface :
Method Name

Int getColumnCount() throws

SQLEXxception

String getColumnName(int column) throws
SQLException

String getColumnTypeName(int column)
throws SQLEXxception

String getTableName(int column) throws
SQLException

String getSchemaName(int
throws SQLEXxception

column)

Complete Example of ResultSetMetaData

Import java.sql.*;

public class ResultSetMetaDataExample

{

static

{
/IRegistering The Driver Class

try
{

Java/ldbc/RakeshBharatiya

Description

Returns the number of columns in a
ResultSet.

Returns the column name.

Returns the database specific datatype of
the column.

Returns the column’s table name.

Returns the name of the schema of the
column’s table.

Class.forName("oracle.jdbc.driver.OracleDriver");

catch (ClassNotFoundException e)

{

System.out.printin("Unable To Load The Driver class");

}
}

public static void main(String[] args)

{

Connection con = null;

Java/ldbc/RakeshBharatiya

Statement stmt = null;

ResultSetrs = null;

try

{
/[Database Credentials
String URL = "jdbc:oracle:thin:@localhost:1521:XE";
String username = "username";
String password = "password";
/[Creating The Connection Object
con = DriverManager.getConnection(URL, username, password);
/[Creating The Statement Object
stmt = con.createStatement();
/IConstructing The SQL Query
String sgl = "SELECT * FROM EMPLOYEE";
/[Executing The Query
rs = stmt.executeQuery(sql);
/[getting ResultSetMetaData object
ResultSetMetaData rsmd = rs.getMetaData();
/l[getting number of columns in 'rs'
Int colCount = rsmd.getColumnCount();
System.out.printin(*"Number Of Columns : "+colCount);
System.out.printin("column Details :");
for (inti=1; i<= colCount; i++)

{

//getting column name of index '’

}

String colName = rsmd.getColumnName(i);
/lgetting column's data type of index '’

String colType = rsmd.getColumnTypeName(i);

Java/ldbc/RakeshBharatiya

System.out.printin(colName+" is of type "+colType);

}

catch (SQLException e)

{
}

e.printStackTrace();

finally

{

/[Closing The DB Resources

/[Closing the ResultSet object

try

if(rs!=null)
{
rs.close();
rs=null;
}
}
catch (SQLException e)

{
e.printStackTrace();

}

/[Closing the Statement object
try
{

if(stmt!=null)

stmt.close();
stmt=null;
}
}
catch (SQLException e)

{
e.printStackTrace();

}

Java/ldbc/RakeshBharatiya

/[Closing the Connection object

try
{
if(con!=null)
{
con.close();
con=null;

}

}
catch (SQLException e)

{
e.printStackTrace();

}
}
}
}

OUTPUT :

Number Of Columns : 4

column Details :

ID is of type NUMBER
FIRST_NAME is of type VARCHAR2
LAST_NAME is of type VARCHAR2
DISIGNATION is of type VARCHAR2

Types of Statement:

1. Statement
2. PreparedStatement
3. CallableStatement

Difference between Statement Object, PreparedStatement
Object and CallableStatement Object in Java:

Statement PreparedStatement CallableStatement

It is used to execute normal | It is used to execute It is used to call the stored

SQL queries.

It is preferred when a
particular SQL query is to be

executed only once.

You cannot pass the

parameters to SQL query

using this interface.

This interface is mainly used

for DDL statements like

CREATE, ALTER, DROP etc.

The performance of this

interface is very low.

parameterized or dynamic SQL

queries.

It is preferred when a particular
query is to be executed multiple

times.

You can pass the parameters to
SQL query at run time using

this interface.

It is used for any kind of SQL
queries which are to be

executed multiple times.

The performance of this

interface is better than the
Statement interface (when used

for multiple execution of same

query).

Java/ldbc/RakeshBharatiya

procedures.

It is preferred when the stored

procedures are to be executed.

You can pass 3 types of
parameters using this interface.
They are — IN, OUT and IN

OUT.

It is used to execute stored

procedures and functions.

The performance of this

interface is high.

Java/ldbc/RakeshBharatiya

PreparedStatement:

e The PreparedStatement interface is a sub interface of Statement. It is used to
execute parameterized query.

o PreparedStatementis use to improve the performance of the application because
guery is compiled only once.

Method to prepare the object :

prepareStatement() is the method of Connection interface, it return the object of
PreparedStatement.

Connection con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe","s

ystem","oracle");

PreparedStatement pstmt=con.prepareStatement("insert into Emp values(?,?)");

Here ‘7’ is the parameter where relevant values can be passed using method of
PreparedStatement interface.

The important methods of PreparedStatement interface are below:

Method Description
public void setint(intparamindex, int | sets the integer value to the given parameter index.
value)

public void setString(intparamindex, @sets the String value to the given parameter index.
String value)

public void setFloat(intparamindex, float | sets the float value to the given parameter index.
value)
public void setDouble(intparamindex, | sets the double value to the given parameter index.
double value)

public intexecuteUpdate() executes the query. It is used for create, drop, insert,
update, delete etc.
public ResultSetexecuteQuery() executes the select query. It returns an instance of

ResultSet.

Java/ldbc/RakeshBharatiya

For example:

pstmt.setint(1,100); /I here 1 is the first parameter and 100 is the value of that
parameter.

Int i = pstmt.executeUpdate(); // this will execute the statement with the passed
parameters.

Example of PreparedStatement to insert records until user press n

import java.sql.*;

import java.io.*;

class RS{

public static void main(String argsl]) throws Exception{
Class.forName("oracle.jdbc.driver.OracleDriver");

Connection con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe","s
" "oracle");

ystem",
PreparedStatement ps=con.prepareStatement(“insert into emp values(?,?,?)");
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
do {

System.out.printin("enter id:");

int id=Integer.parselnt(br.readLine());

System.out.printin("enter name:");

String name=Dbr.readLine();

System.out.printin("enter salary:");

float salary=Float.parseFloat(br.readLine());

ps.setint(1,id);

Java/ldbc/RakeshBharatiya

ps.setString(2,name);
ps.setFloat(3,salary);
int i=ps.executeUpdate();

System.out.printin(i+" records affected");

System.out.printin("Do you want to continue: y/n");
String s=br.readLine();

if(s.startsWith("n")){

break;

}

}while(true);

con.close();

1}

CallableStatement

CallableStatement interface is used to call the stored procedures and functions,
made by using PL/SQL.

Stored procedure and functions in SQL are the collection of SQL statements to perform
business logic on the database and to made calculations.

Difference between procedure and function is that function must return a value. A
procedure can call a function but reverse is not true. A procedure can have input and
output but function can only have input. Procedure can handle exception but function
cannot.

Making Instance of CallableStatement :

CallableStatement stmt=con.prepareCall("{call procedureName(?,?)}");

Java/ldbc/RakeshBharatiya

Where procedure name is the name of procedure which we want to call.

The said procedure can receive two arguments (?,7?).

For Example :

Following is the procedure with name Proc :

create or replace procedure "proc”
(id IN NUMBER,

name IN VARCHAR?2)

is

begin

insert into emp values(id,name);
end;

/

Table Structure is like this :
create table emp(id number(10), name varchar2(200));

Following is the complete program to run the above procedure which can accept 2
argument for id and name:

import java.sql.*;
public class Proc {
public static void main(String[] args) throws Exception{

Class.forName("oracle.jdbc.driver.OracleDriver");
Connection con=DriverManager.getConnection(
"jdbc:oracle:thin:@localhost:1521:xe","system","oracle");

Java/ldbc/RakeshBharatiya

CallableStatement cstmt=con.prepareCall(“{call proc(?,?)}");
cstmt.setint(1,101);

cstmt.setString(2,"XYZ");

cstmt.execute();

System.out.printin("success");

}
}

Calling Function through CallableStatement

CallableStatement cstmt=con.prepareCall("{?= call FunctionName(?,?)}");

Here first “?” mark represent the return value.

To accept the return value CallableStatement have special function :

Cstmt.registerOutParameter(1,Type.INTEGER)

Here 1 represent first argument, Type tells the CallableStatement about the data type of
return value.

Example :

SQL Function :

create or replace function sum4
(n1in number,n2 in number)
return number

is

temp number(8);

begin

temp :=nl+n2;

return temp;
end;
/

import java.sql.*;
public class FuncSum {
public static void main(String[] args) throws Exception{

Class.forName("oracle.jdbc.driver.OracleDriver");
Connection con=DriverManager.getConnection(
"jdbc:oracle:thin:@localhost:1521:xe","system","oracle");

CallableStatement cstmt=con.prepareCall("{?= call sum4(?,?)}");
cstmt.setint(2,10);

cstmt.setint(3,43);
cstmt.registerOutParameter(1,Types.INTEGER);
cstmt.execute();

System.out.printin(cstmt.getint(1));
3}

Java/ldbc/RakeshBharatiya

Java/ldbc/RakeshBharatiya

Creating Table

import java.sql.*;

public class TestApplication {

static final String DB_URL = "jdbc:mysql://localhost/ TUTORIALSPOINT";
static final String USER = "guest"”;
static final String PASS = "guest123";

public static void main(String argsl]) {
try{
Connection conn = DriverManager.getConnection(DB_URL, USER, PASS);
Statement stmt = conn.createStatement();

String QUERY1 = "CREATE TEMPORARY TABLE EMPLOYEES_COPY SELECT * FROM
EMPLOYEES";

stmt.execute(QUERY1);

String QUERY2 = "SELECT * FROM EMPLOYEES_COPY";

ResultSet rs = stmt.executeQuery(QUERY?2);

while (rs.next()){
System.out.print("ld: " + rs.getInt("id"));
System.out.print(" Age: " + rs.getint("age™);
System.out.print(" First: " + rs.getString("first"));
System.out.printin(" Last: " + rs.getString("last"));
System.out.printin(" ");

}

}catch (SQLException e){
e.printStackTrace();

